

2003 AFCEE Technology Transfer Workshop

Promoting Readiness through Environmental Stewardship

Anaerobic Bioremediation of Chlorinated Solvent Source Areas – What Can Be Achieved?

Bob Borden Solutions-IES February 27, 2003

Problems with Pump & Treat

- Pump and treat systems can remove significant amounts of dissolved contaminants
 - Stripping
 Tower

 Withdrawal
 Well

 Injection
 Well

 DNAPL Pool

 Clay/Bedrock/Aquitard

High O&M costs

- Source: Dick Jackson
- NAPL removal is limited by dissolution kinetics
 - Chlorinated solvents have moderate to low solubility
 - Slow mass transfer rates

DNAPL Dissolution - No Biodegradation

NAPL Dissolution Rate

$$dC/dt = Km A (Cs - C)$$

C = dissolved conc.

T = time

Km = mass transfer rate

A = NAPL-water

contact area

Cs = NAPL solubility

Enhanced Anaerobic Bioremediation

- Same basic system as pump & treat
 - Inject water containing biodegradable substrate
 - Flush past contaminant
 - Recover and circulate

- Substrate addition
- Monitoring and process control
- Biofouling of wells, infiltration basins and piping
- Benefit increased dissolution

DNAPL Dissolution with Biodegradation

Anaerobic Biodegradation

NAPL ? TCE

TCE ? DCE ? VC? Ethene

$$\begin{split} \frac{dTCE}{dt} &= -K_{TCE}TCE \\ \frac{dDCE}{dt} &= +K_{TCE}TCE - K_{DCE}DCE \\ \frac{dVC}{dt} &= +K_{DCE}DCE - K_{VC}VC \\ \frac{dETHENE}{dt} &= +K_{VC}VC \end{split}$$

How Bioremediation is Supposed to Work

- Higher Biodegradation rates reduce aqueous TCE concentration
- Lower dissolved TCE conc. increases dissolution rate causing more rapid TCE removal

Laboratory Results

- Yang and McCarty (2000)
 - Column containing residual PCE
 - PCE Solubility = 150 mg/L
 = 0.9 mM
 - Columns fed pentanol
 - Large production of c-DCE
 - Total ethenes = 4 5 mM
- Biodegradation increased PCE dissolution by 500%

PCE

? TCE

■ cDCE

ethene

-- total

Laboratory Results

- Cope and Hughes (2001)
 - Columns containing PCE / tridecane
 - High substrate columnno dechlorination
 - Moderate substrate column

- 16 times increase in PCE removal
- 6.5 times increase in total ethene removal
- Low substrate column
 - 5.0 times increase in total ethene removal

NAPL Dissolution – High Mass Transfer Rates

NAPL Dissolution – Low Mass Transfer Rates

Enhanced Biodegradation 0 —

Impact of Mass Transfer on NAPL Removal

What can Bio-dissolution Achieve?

	High Mass Transfer Rate	Low Mass Transfer Rate
Average NAPL Saturation	0.1	0.005
NAPL Mass (Kg)	5,000	250
No Biodegradation		
Max. TCE Concentration (mg/L)	730	25
Dissolution Rate (g/d)	250	8.7
Source Half-life (years)	27	39
Rapid Biodegradation (k=1/d)		
Dissolution Rate (g/d)	430	8.9
Source Half-life (years)	16	39

Bioremediation for Source Containment

 Enhanced biodegradation can control down gradient migration of dissolved solvents

INEEL Results

- Liquid wastes injected into fractured basalt aquifer (1950's – 1970's)
 - Sewage
 - Cooking wastes (oil and grease)
 - Chlorinated solvents (DNAPLs?)
 - Petroleum
 - Radionuclides
- Monitoring data showed evidence of reductive dechlorination
- Remediation approach pulsed addition of soluble substrate (organic acids) to original injection well

INEEL Results

INEEL Results

Lactate addition has resulted in major reduction of TCE plume

Conclusions

- Highly contaminated source areas
 - Pump and treat will take a very long time to cleanup source
 - Enhanced bioremediation can increase amount of NAPL dissolved
 - Biologically enhanced pump and treat will still take a very long time to cleanup source
 - O&M costs are higher than for conventional P&T

Conclusions

- Lightly contaminated source areas
 - Aqueous phase concentrations are moderate to low
 - Pump and treat will take a very long time to cleanup source
 - If contaminant removal by pump and treat is mass transfer limited, enhanced bioremediation will have very little impact on NAPL removal rate

Conclusions

- Biologically Enhanced Source Containment
 - Anaerobic biodegradation can prevent downgradient migration of dissolved solvents
 - Requires regular operation and maintenance
 - Substrate addition
 - Process monitoring
 - Biofouling issues

Containment using Edible Oils

- NAPLs preferentially enter high K layers
- Groundwater flow through these high K zones enhances contaminant mass flux
- Solution -- Inject foodgrade edible oils in source area to reduce dissolved mass flux

Benefits of Edible Oil Injection

- Short-term
 - Reduce permeability
 - Reduce effective solubility of contaminants C_{effective} = Solubility * Mole Fraction
 - Enhance biodegradation of contaminants that are release
 - Net result? lower contaminant mass flux, lower risk to downgradient receptors
- Long-term
 - Enhanced biodegradation of contaminants